

Cancer Institute

OVIDENCE

An Off-the-Shelf Multivalent Vaccine Containing Cancer's Dark Matter, DPV-001, Combined with PD-1 +/-GITR in Head & Neck Cancer: Safety, Efficacy, and Immunodynamics from the Phase 1 GITRVax Trial

Rom S. Leidner¹, Christopher Paustian¹, Shawn M. Jensen¹, Tarsem Moudgil¹, Yoshinobu Koguchi¹, Noah Simons¹, Venkatesh Rajamanickam¹, Tanisha Christie¹, Noah Simons¹, Noah Dennis Nijenhuis^{1,3}, Noriko Iwamoto⁴, Yuriko Minegishi⁵, Koji Ueda⁵, William Redmond¹, Lessli M. Rushforth¹, Takashi Shimada⁴, Patrick Rethwisch¹, Ashish Patel¹, R. Bryan Bell¹, Carlo B. Bifulco¹, Traci L. Hilton⁶, Hong-Ming Hu⁶, Brian Piening¹, Walter J. Urba¹, Bernard A. Fox^{1,6}.

> ¹Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon 97213 ; ²Boston University, Boston, MA; ³Vrije University, Amsterdam, the Netherlands, ⁴Shimadzu Corporation, Kyoto, Japan; ⁵Japanese Foundation for Cancer Research, Tokyo, Japan; ⁶UbiVac, Portland, Oregon 97224

CT112

Background: Immune responses to shared cancer antigens have correlated with durable clinical responses. DPV-001 is a novel microvesicle vaccine that contains >300 proteins for genes commonly overexpressed by cancer and is enriched for shortlived proteins (SLiPs), and defective ribosomal products (DRiPs), including non-canonical peptides, epresenting potential shared non-mutated alternative cancer neoantigens (dark matter). Preclinical studies identified increased therapeutic efficacy when this vaccine strategy was combined with anti-PD-1 and anti-GITR, leading to this clinical trial for patients with advanced or metastatic HNSCC.

Methods: Following safety run-in, eligible pts were randomly assigned 1:1 to receive DPV-001 +/- GITR agonist mAb (INCAGN-1949; q2wks). All received sequenced PD-1 mAb (retifanlimab; q4wks) starting D15. Safety was evaluated as the primary endpoint and efficacy was evaluated as a secondary endpoint. Tumor biopsies were taken pre-treatment, Wk 2 and 8, and assessed by CITE-seq, scRNA-seq, BCR-seq, and TCR-seq. Multiplex immunofluoresence (mIF) was performed on biopsies. Blood samples were taken pretreatment and at multiple timepoints and analyzed by flow cytometry and seromics.

Results: 18 pts received backbone therapy of DPV-001 + sequenced PD-1; of these, 9 pts also received GITR starting D1 (Arm 2). G3 irAE's included: hypothyroidism & mucositis (Arm 1, same pt); pneumonitis and adrenal insufficiency (Arm 2, separate pts). No G4 toxicity was observed. Combining both arms, the response rate (RR) for PD-1 naïve pts was 55% (5/9), and 33% (3/9) for PD-1 experienced pts. Two CR's have been observed in Arm 2. Durability of response (DOR) and progression-free survival (PFS) will be reported at the meeting. DPV-001 induced increased Ki67+ CD4 EM (p<0.042) by D15, prior to first dose of PD-1. Addition of GITR at D1 further increased Ki67+ CD4 (p=0.008) & CD8 EM cells (P=0.0006) by D15. Activated or proliferating CD4 and CD8 EM were significantly increased in both arms by D30 (p<0.025). Across above specified analyses, pts receiving GITR had the greatest increase Evaluable pts had significantly (all p<0.032) increased numbers of TIL expressing IFN-γ and/or GZMB, LAG-3, and TIM3 in on-treatment biopsies. TCR, BCR, and seromic analyses, as well as studies to identify targets of anti-cancer immunity, are ongoing.

Conclusions: This 18 pt trial of DPV-001 and sequenced PD-1 +/- GITR shows a promising RR and evidence of increased activation and expansion of effector T cells in PBL and tumor. Upregulation of LAG-3 and TIM3 by T cells that infiltrate the tumor and have increased in number, provide a rationale for including inhibitors for both in this treatment strategy. Current efforts include evaluating whether immune responses target shared non-canonical alternative neoantigens, or Dark Matter, contained in DPV-001, and whether synchronized antibody and cellular response is

Acknowledgements: Support provided by Incyte UbiVac, Providence Portland Medical Foundation. Steve and Cindy Harder, Nancy Lematta, Trial Registry: NCT04470024, Ethics Approval: PSJH IRB# 2020000480

Clinical Trial Design

